Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Acta Physiologica Sinica ; (6): 903-912, 2022.
Artigo em Chinês | WPRIM | ID: wpr-970086

RESUMO

Vascular calcification is a common pathological process in patients with diabetes, chronic kidney disease, and cardiovascular disease, manifested by the deposition of hydroxyapatite on the walls of blood vessels. Hydrogen sulfide is the third gas signal molecule found in mammals after nitric oxide and carbon monoxide, which has anti-inflammatory, antioxidant stress and other effects in the cardiovascular system. In recent years, it has been recognized that hydrogen sulfide has an anti-vascular calcification effect, and supplementation with hydrogen sulfide and its donors can alleviate vascular calcification. In this review, we discussed the various evidence of the protective effect of hydrogen sulfide on vascular calcification, and highlighted the hydrogen sulfide metabolism changes and the potential regulatory mechanisms of hydrogen sulfide on the pathophysiological changes in vascular calcification.


Assuntos
Animais , Humanos , Sulfeto de Hidrogênio/metabolismo , Doenças Cardiovasculares , Monóxido de Carbono , Antioxidantes , Óxido Nítrico , Mamíferos/metabolismo
2.
Acta cir. bras ; 36(12): e361204, 2021. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1360063

RESUMO

ABSTRACT Purpose: To explore the role and mechanisms of octreotide in neurofunctional recovery in the traumatic brain injury (TBI) model. Methods: Rats were subjected to midline incision followed by TBI in the prefrontal cortex region. After 72 hours, the behavioural and neurological deficits tests were performed, which included memory testing on Morris water maze for 5 days. Octreotide (15 and 30 mg/kg i.p.) was administered 30 minutes before subjecting to TBI, and its administration was continued for three days. Results: In TBI-subjected rats, administration of octreotide restored on day 4 escape latency time (ELT) and increased the time spent in the target quadrant (TSTQ) on day 5, suggesting the improvement in learning and memory. It also increased the expression of H2S, Nrf2, and cystathionine-γ-lyase (CSE) in the prefrontal cortex, without any significant effect on cystathionine-β-synthase. Octreotide also decreased the TNF-α levels and neurological severity score. However, co-administration of CSE inhibitor (D,L-propargylglycine) abolished octreotide-mediated neurofunctional recovery, decreased the levels of H2S and Nrf2 and increased the levels of TNF-α. Conclusions: Octreotide improved the neurological functions in TBI-subjected rats, which may be due to up-regulation of H2S biosynthetic enzyme (CSE), levels of H2S and Nrf2 and down-regulation of neuroinflammation.


Assuntos
Animais , Ratos , Octreotida/farmacologia , Lesões Encefálicas Traumáticas/tratamento farmacológico , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/farmacologia , Fator de Necrose Tumoral alfa , Fator 2 Relacionado a NF-E2
3.
J. appl. oral sci ; 26: e20170161, 2018. graf
Artigo em Inglês | LILACS, BBO | ID: biblio-893692

RESUMO

Abstract Objectives The aim of this study was to reveal the mechanisms by which zinc ions inhibit oral malodor. Material and Methods The direct binding of zinc ions to gaseous hydrogen sulfide (H2S) was assessed in comparison with other metal ions. Nine metal chlorides and six metal acetates were examined. To understand the strength of H2S volatilization inhibition, the minimum concentration needed to inhibit H2S volatilization was determined using serial dilution methods. Subsequently, the inhibitory activities of zinc ions on the growth of six oral bacterial strains related to volatile sulfur compound (VSC) production and three strains not related to VSC production were evaluated. Results Aqueous solutions of ZnCl2, CdCl2, CuCl2, (CH3COO)2Zn, (CH3COO)2Cd, (CH3COO)2Cu, and CH3COOAg inhibited H2S volatilization almost entirely. The strengths of H2S volatilization inhibition were in the order Ag+ > Cd2+ > Cu2+ > Zn2+. The effect of zinc ions on the growth of oral bacteria was strain-dependent. Fusobacterium nucleatum ATCC 25586 was the most sensitive, as it was suppressed by medium containing 0.001% zinc ions. Conclusions Zinc ions have an inhibitory effect on oral malodor involving the two mechanisms of direct binding with gaseous H2S and suppressing the growth of VSC-producing oral bacteria.


Assuntos
Zinco/farmacologia , Halitose/tratamento farmacológico , Sulfeto de Hidrogênio/antagonistas & inibidores , Antibacterianos/farmacologia , Fatores de Tempo , Bactérias/crescimento & desenvolvimento , Bactérias/efeitos dos fármacos , Volatilização , Zinco/química , Testes de Sensibilidade Microbiana , Cloretos/química , Reprodutibilidade dos Testes , Estatísticas não Paramétricas , Meios de Cultura , Halitose/microbiologia , Sulfeto de Hidrogênio/análise , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/química , Acetatos/química , Antibacterianos/química
4.
Braz. j. microbiol ; 47(1): 181-190, Jan.-Mar. 2016. tab, graf
Artigo em Inglês | LILACS | ID: lil-775120

RESUMO

Abstract In the present work we isolated and identified various indigenous Saccharomyces cerevisiae strains and screened them for the selected oenological properties. These S. cerevisiae strains were isolated from berries and spontaneously fermented musts. The grape berries (Sauvignon blanc and Pinot noir) were grown under the integrated and organic mode of farming in the South Moravia (Czech Republic) wine region. Modern genotyping techniques such as PCR-fingerprinting and interdelta PCR typing were employed to differentiate among indigenous S. cerevisiae strains. This combination of the methods provides a rapid and relatively simple approach for identification of yeast of S. cerevisiae at strain level. In total, 120 isolates were identified and grouped by molecular approaches and 45 of the representative strains were tested for selected important oenological properties including ethanol, sulfur dioxide and osmotic stress tolerance, intensity of flocculation and desirable enzymatic activities. Their ability to produce and utilize acetic/malic acid was examined as well; in addition, H2S production as an undesirable property was screened. The oenological characteristics of indigenous isolates were compared to a commercially available S. cerevisiae BS6 strain, which is commonly used as the starter culture. Finally, some indigenous strains coming from organically treated grape berries were chosen for their promising oenological properties and these strains will be used as the starter culture, because application of a selected indigenous S. cerevisiae strain can enhance the regional character of the wines.


Assuntos
Saccharomyces cerevisiae/classificação , Saccharomyces cerevisiae/isolamento & purificação , Vitis/microbiologia , Ácido Acético/metabolismo , Aderência Bacteriana , República Tcheca , Impressões Digitais de DNA , Tolerância a Medicamentos , Etanol/toxicidade , Sulfeto de Hidrogênio/metabolismo , Tipagem Molecular , Técnicas de Tipagem Micológica , Malatos/metabolismo , Pressão Osmótica , Reação em Cadeia da Polimerase , Estresse Fisiológico , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Dióxido de Enxofre/toxicidade
5.
Int. braz. j. urol ; 41(3): 503-510, May-June 2015. ilus
Artigo em Inglês | LILACS | ID: lil-755866

RESUMO

ABSTRACTPurpose:

Calcium oxalate urolithiasis is one of the most common urinary tract diseases and is of high prevalence. The present study proposes to evaluate the antilithiatic property of hydrogen sulfide and its metabolites like thiosulfate & sulfate in an in vitro model.

Materials and Methods:

The antilithiatic activity of sodium hydrogen sulfide (NaSH), sodium thiosulfate (Na2S2O3) and sodium sulfate (Na2SO4) on the kinetics of calcium oxalate crystal formation was investigated both in physiological buffer and in urine from normal and recurrent stone forming volunteers. The stones were characterized by optical and spectroscopic techniques.

Results:

The stones were characterized to be monoclinic, prismatic and bipyramidal habit which is of calcium monohydrate and dihydrate nature. The FTIR displayed fingerprint corresponding to calcium oxalate in the control while in NaSH treated, S=O vibrations were visible in the spectrum. The order of percentage inhibition was NaSH>Na2S2O3>Na2SO4.

Conclusion:

Our study indicates that sodium hydrogen sulfide and its metabolite thiosulfate are inhibitors of calcium oxalate stone agglomeration which makes them unstable both in physiological buffer and in urine. This effect is attributed to pH changes and complexing of calcium by S2O32-and SO42- moiety produced by the test compounds.

.


Assuntos
Adulto , Feminino , Humanos , Masculino , Oxalato de Cálcio/metabolismo , Sulfeto de Hidrogênio/química , Sulfeto de Hidrogênio/metabolismo , Urolitíase/metabolismo , Urolitíase/prevenção & controle , Análise de Variância , Estudos de Casos e Controles , Oxalato de Cálcio/química , Reprodutibilidade dos Testes , Espectroscopia de Infravermelho com Transformada de Fourier , Urina/química
6.
Arq. gastroenterol ; 50(2): 157-160, abr. 2013. tab, graf
Artigo em Inglês | LILACS | ID: lil-679152

RESUMO

Context Hydrogen sulphide (H2S) has been proved to be a neuromodulator and contributes to the maintenance of gastric mucosal integrity in damage caused by anti-inflammatory nonsteroidal drugs. Previously, we demonstrated that H2S synthesis is essential to gastric protection against ethanol. Objective To better understanding the role of H2S and the detailed localization of its production in both normal and injured stomach due to ethanol injection, we studied the expression of cystathionine-γ-lyase (CSE) and cystathionine-β-synthetase (CBS) isoforms in gastric mucosa of mice treated with saline or 50% ethanol. Methods Mice were treated by gavage with saline or 50% ethanol (0.5 mL/25 g). After 1 hour, mice were sacrificed, and gastric tissue was evaluated by histological and immunohistochemical analysis specific for CSE and CBS. Results We have demonstrated a non-specific expression of CBS in the normal gastric mucosa and expression of CSE occurring mainly in the parietal cells of the animals treated with ethanol. Conclusion Thus, we demonstrated that the expression of CBS appears to be constitutive and diffuse across the gastric epithelium, while the expression of CSE appears to be induced in parietal cells by damage agents such as ethanol. .


Contexto O sulfeto de hidrogênio (H2S) tem sido mostrado como um neuromodulador e contribuidor para a manutenção da integridade da mucosa gástrica na lesão causada por drogas antiinflamatórias não esteroidais. Previamente, demonstramos que a síntese de H2S é essencial para a proteção da mucosa gástrica contra a administração de etanol. Objetivo Para compreender o papel do H2S e a localização detalhada de sua produção no estômago normal e após lesão induzida pela administração de etanol, estudou-se a expressão das isoformas cistationina-γ-liase (CSE) e cistationina-β-sintetase (CBS) na mucosa gástrica de camundongos tratados com salina ou etanol 50%. Métodos Os camundongos foram tratados por gavagem com salina ou etanol 50% (0,5 mL/25 g). Após 1 hora, os camundongos foram sacrificados e os tecidos gástricos foram avaliados por análise histológica e imunoistoquímica específica para CBS e CSE. Resultados Foi demonstrado expressão não específica de CBS na mucosa gástrica normal e expressão de CSE ocorrendo principalmente nas células parietais dos animais tratados com etanol. Conclusão Assim, demonstramos que a expressão de CBS parece ser constitutiva e difusa através do epitélio gástrico, enquanto a expressão de CSE parece ser induzida nas células parietais por agentes lesivos como o etanol. .


Assuntos
Animais , Camundongos , Cistationina beta-Sintase/metabolismo , Cistationina gama-Liase/metabolismo , Mucosa Gástrica/enzimologia , Sulfeto de Hidrogênio/metabolismo , Modelos Animais de Doenças , Etanol/farmacologia , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/patologia , Imuno-Histoquímica
7.
Braz. j. med. biol. res ; 45(10): 898-905, Oct. 2012. ilus, tab
Artigo em Inglês | LILACS | ID: lil-647748

RESUMO

The JAK2/STAT3 signal pathway is an important component of survivor activating factor enhancement (SAFE) pathway. The objective of the present study was to determine whether the JAK2/STAT3 signaling pathway participates in hydrogen sulfide (H2S) postconditioning, protecting isolated rat hearts from ischemic-reperfusion injury. Male Sprague-Dawley rats (230-270 g) were divided into 6 groups (N = 14 per group): time-matched perfusion (Sham) group, ischemia/reperfusion (I/R) group, NaHS postconditioning group, NaHS with AG-490 group, AG-490 (5 µM) group, and dimethyl sulfoxide (DMSO; <0.2%) group. Langendorff-perfused rat hearts, with the exception of the Sham group, were subjected to 30 min of ischemia followed by 90 min of reperfusion after 20 min of equilibrium. Heart rate, left ventricular developed pressure (LVDP), left ventricular end-diastolic pressure (LVEDP), and the maximum rate of increase or decrease of left ventricular pressure (± dp/dt max) were recorded. Infarct size was determined using triphenyltetrazolium chloride (TTC) staining. Myocardial TUNEL staining was used as the in situ cell death detection method and the percentage of TUNEL-positive nuclei to all nuclei counted was used as the apoptotic index. The expression of STAT3, bcl-2 and bax was determined by Western blotting. After reperfusion, compared to the I/R group, H2S significantly improved functional recovery and decreased infarct size (23.3 ± 3.8 vs 41.2 ± 4.7%, P < 0.05) and apoptotic index (22.1 ± 3.6 vs 43.0 ± 4.8%, P < 0.05). However, H2S-mediated protection was abolished by AG-490, the JAK2 inhibitor. In conclusion, H2S postconditioning effectively protects isolated I/R rat hearts via activation of the JAK2/STAT3 signaling pathway.


Assuntos
Animais , Masculino , Ratos , Sulfeto de Hidrogênio/metabolismo , Pós-Condicionamento Isquêmico , /metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , /metabolismo , Apoptose , /análise , Ratos Sprague-Dawley , Transdução de Sinais , /análise , Tirfostinas
8.
Braz. j. med. biol. res ; 45(3): 244-249, Mar. 2012. ilus, tab
Artigo em Inglês | LILACS | ID: lil-618052

RESUMO

Animal models of gentamicin nephrotoxicity present acute tubular necrosis associated with inflammation, which can contribute to intensify the renal damage. Hydrogen sulfide (H2S) is a signaling molecule involved in inflammation. We evaluated the effect of DL-propargylglycine (PAG), an inhibitor of endogenous H2S formation, on the renal damage induced by gentamicin. Male Wistar rats (N = 8) were injected with 40 mg/kg gentamicin (im) twice a day for 9 days, some of them also received PAG (N = 8, 10 mg·kg-1·day-1, ip). Control rats (N = 6) were treated with saline or PAG only (N = 4). Twenty-four-hour urine samples were collected one day after the end of these treatments, blood samples were collected, the animals were sacrificed, and the kidneys were removed for quantification of H2S formation and histological and immunohistochemical studies. Gentamicin-treated rats presented higher sodium and potassium fractional excretion, increased plasma creatinine [4.06 (3.00; 5.87) mg percent] and urea levels, a greater number of macrophages/monocytes, and a higher score for tubular interstitial lesions [3.50 (3.00; 4.00)] in the renal cortex. These changes were associated with increased H2S formation in the kidneys from gentamicin-treated rats (230.60 ± 38.62 µg·mg protein-1·h-1) compared to control (21.12 ± 1.63) and PAG (11.44 ± 3.08). Treatment with PAG reduced this increase (171.60 ± 18.34), the disturbances in plasma creatinine levels [2.20 (1.92; 4.60) mg percent], macrophage infiltration, and score for tubular interstitial lesions [2.00 (2.00; 3.00)]. However, PAG did not interfere with the increase in fractional sodium excretion provoked by gentamicin. The protective effect of PAG on gentamicin nephrotoxicity was related, at least in part, to decreased H2S formation.


Assuntos
Animais , Masculino , Ratos , Alcinos/farmacologia , Antibacterianos/toxicidade , Gentamicinas/toxicidade , Glicina/análogos & derivados , Sulfeto de Hidrogênio/antagonistas & inibidores , Necrose Tubular Aguda/induzido quimicamente , Creatinina/sangue , Glicina/farmacologia , Sulfeto de Hidrogênio/metabolismo , Imuno-Histoquímica , Necrose Tubular Aguda/tratamento farmacológico , Rim/metabolismo , Ratos Wistar , Fatores de Tempo
9.
The Korean Journal of Gastroenterology ; : 275-284, 2012.
Artigo em Coreano | WPRIM | ID: wpr-175413

RESUMO

The human intestinal microbiota is a community of 10(13)-10(14) microorganisms that harbor in the intestine and normally participate in a symbiotic relationship with human. Technical and conceptual advances have enabled rapid progress in characterizing the taxonomic composition, metabolic capacity and immunomodulatory activity of the human intestinal microbiota. Their collective genome, defined as microbiome, is estimated to contain > or =150 times as many genes as 2.85 billion base pair human genome. The intestinal microbiota and its microbiome form a diverse and complex ecological community that profoundly impact intestinal homeostasis and disease states. It is becoming increasingly evident that the large and complex bacterial population of the large intestine plays an important role in colorectal carcinogenesis. Numerous studies show that gut immunity and inflammation have impact on the development of colorectal cancer. Additionally, bacteria have been linked to colorectal cancer by the production of toxic and genotoxic bacterial metabolite. In this review, we discuss the multifactorial role of intestinal microbiota in colorectal cancer and role for probiotics in the prevention of colorectal cancer.


Assuntos
Animais , Humanos , Bacteroides/metabolismo , Neoplasias Colorretais/imunologia , Ácidos Graxos não Esterificados/metabolismo , Sulfeto de Hidrogênio/metabolismo , Mucosa Intestinal/imunologia , Metagenoma , Probióticos , Espécies Reativas de Oxigênio/metabolismo , Toxinas Biológicas/metabolismo
10.
Indian J Biochem Biophys ; 2009 Dec; 46(6): 441-446
Artigo em Inglês | IMSEAR | ID: sea-135227

RESUMO

Mitochondrial mechanism of oxidative stress and matrix metalloproteinase (MMP) activation was unclear. Our recent data suggested that MMPs are localized to mitochondria and activated by peroxynitrite, which causes cardiovascular remodeling and failure. Recently, we have demonstrated that elevated levels of homocysteine (Hcy), known as hyperhomocysteinemia (HHcy) increase oxidative stress in the mitochondria. Although HHcy causes heart failure, interestingly, it is becoming very clear that Hcy can generate hydrogen sulfide (H2S), if the enzymes cystathionine β-synthase (CBS) and cystathionine -lyase (CGL) are present. H2S is a strong anti-oxidant and vasorelaxing agent. Paradoxically, it is interesting that Hcy, a precursor of H2S can be cardioprotective. The CGL is ubiquitous, while the CBS is not present in the vascular tissues. Therefore, under normal condition, only half of Hcy can be converted to H2S. However, there is strong potential for gene therapy of CBS to vascular tissue that can mitigate the detrimental effects of Hcy by converting it to H2S. This scenario is possible, if the activities of both the enzymes (CBS and CGL) are increased in tissues by gene therapy.


Assuntos
Animais , Deleção de Genes , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Homocisteína/metabolismo , Humanos , Sulfeto de Hidrogênio/metabolismo , Contração Miocárdica , Receptores de N-Metil-D-Aspartato/deficiência , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
11.
International Journal of Environmental Science and Technology. 2008; 5 (3): 287-296
em Inglês | IMEMR | ID: emr-100378

RESUMO

Biofiltration has shown to be a promising technique for handling malodours arising from process industries. The present investigation pertains to the removal of hydrogen sulphide in a lab scale biofilter packed with biomedia, encapsulated by sodium alginate and poly vinyl alcohol. The experimental data obtained under both steady state and shock loaded conditions were modelled using the basic principles of artificial neural networks. Artificial neural networks are powerful data driven modelling tools which has the potential to approximate and interpret complex input/ output relationships based on the given sets of data matrix. A predictive computerised approach has been proposed to predict the performance parameters namely, removal efficiency and elimination capacity using inlet concentration, loading rate, flow rate and pressure drop as the input parameters to the artificial neural network model. Earlier, experiments from continuous operation in the biofilter showed removal efficiencies from 50 to 100% at inlet loading rates varying up to 13 g H2S/m[3]h. The internal network parameter of the artificial neural network model during simulation was selected using the 2[k] factorial design and the best network topology for the model was thus estimated. The results showed that a multilayer network [4-4-2] with a back propagation algorithm was able to predict biotilter performance effectively with R[2] values of 0.9157 and 0.9965 for removal efficiency and elimination capacity in the test data. The proposed artificial neural network model for biofilter operation could be used as a potential alternative for knowledge based models through proper training and testing of the state variables


Assuntos
Modelos Biológicos , Sulfeto de Hidrogênio/metabolismo , Poluentes Atmosféricos , Células Imobilizadas/metabolismo , Filtração/instrumentação , Poluentes Atmosféricos/prevenção & controle
13.
Artigo em Inglês | IMSEAR | ID: sea-112731

RESUMO

In the study carried out from, February, 1996 to January, 1999. 42 (33.9%) a typical variants of S typhi which fermented sucrose were encountered. This variant was identified as of antigenic structure 9, 12, v1, d1 and typed as phage type E1 and Bio type I.


Assuntos
Fermentação , Humanos , Sulfeto de Hidrogênio/metabolismo , Salmonella typhi/efeitos dos fármacos , Febre Tifoide/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA